ADAPTIVE OPTICS IMAGING OF PARAFOVEAL CONES IN TYPE 1 DIABETES

MARCO LOMBARDO, MD, PhD,* MARIACRISTINA PARRAVANO, MD,*
GIUSEPPE LOMBARDO, MENG, PhD,†‡ MONICA VARANO, MD,* BARBARA BOCCASSINI, MD,*
MARIO STIRPE, MD,* SEBASTIANO SERRAO, MD, PhD*

Purpose: To evaluate the parafoveal cone density in patients with Type 1 diabetes mellitus (DM1).

Methods: Adaptive optics retinal images of the photoreceptor mosaic were acquired from 11 DM1 patients (study group) and 11 age-matched healthy subjects (control group). Cone density was analyzed, along the horizontal and vertical meridian, at 230-μm, 350-μm, and 460-μm eccentricity from the fovea. Central retinal thickness was measured using a Spectralis spectral-domain optical coherence tomography. A multiple regression model was performed to determine the relationships between the explanatory variables (age, glycohemoglobin level, presence of diabetic retinopathy, duration of diabetes, and central retinal thickness) and cone density.

Results: Patients had a diagnosis of DM1 in the past 9 years to 21 years. Of these, five patients had a diagnosis of no diabetic retinopathy and six had mild nonproliferative diabetic retinopathy. On average, cone density was 10% lower in the study than in the control group at each retinal eccentricity along the horizontal and vertical meridians (analysis of variance, \(P < 0.001 \)). The central retinal thickness was thicker in DM1 eyes than in the control eyes (278 ± 20 μm and 260 ± 13 μm; \(P < 0.05 \)). The model explained 61% (\(P < 0.01 \)) of the variance of cone density in the population, with the variables representing an abnormal glucose metabolism, that is, a higher glycohemoglobin level, the presence of diabetic retinopathy, and a chronic diabetes, having the highest influence on cone density decline.

Conclusion: A subtle decrease of parafoveal cone density was found in DM1 patients in comparison with age-matched control subjects via high-resolution adaptive optics retinal imaging. The cone density decline was moderately associated with a disturbance in the glucose metabolism.

RETINA 0:1–12, 2013

Diabetic retinopathy (DR) is a serious and frequently occurring complication of diabetes mellitus. It represents the leading cause of new cases of blindness among adults in the Western world: the estimated proportion of blindness as a result of DR is 15% to 17% in the Americas and Europe. It can be classified as nonproliferative (NPDR) or proliferative. Nonproliferative diabetic retinopathy is further graded in mild, moderate, and severe according to the Early Treatment Diabetic Retinopathy Study severity scale. According to the most commonly accepted pathophysiological model (microvascular theory), DR consists of a microangiopathy that induces pathologic changes of the vascular structures and in the blood rheological properties as a consequence of chronic hyperglycemia. All these factors contribute to increased capillary permeability and capillary occlusion, and accordingly to retinal ischemia, leading to the major complications of DR, which include the generation of new retinal–vitreal vessels and retinal detachment. Diabetic retinopathy has
been also theorized as a multifactorial disease involving the retinal neuronal cells (neurodegenerative theory). The neurodegenerative changes are apoptosis of several populations of retinal cells, including photoreceptors, bipolar cells, ganglion cells, and astrocytes. Structural and functional impairments of the neural tissue are supposed to contribute to the earliest alterations of the vascular structures.

Experimental evidence of apoptotic death of cone photoreceptors and necrotic degeneration of neuronal cells has been provided in drug-induced diabetes. In addition to microangiopathy, nonnecrotic photoreceptor loss has been therefore theorized to be responsible for the pathologic alteration of cones associated with diabetes. As far as we know, there has been no attempt to investigate whether cone loss may occur in patients with diabetes during the early DR stage.

Noninvasive clinical detection of DR is usually performed by dilated fundus examination, color fundus photography, and more sophisticated retinal imaging techniques, including scanning laser ophthalmoscopy and spectral-domain optical coherence tomography (SD-OCT). Adaptive optics (AO) technology permits to obtain high-resolution images of the retina, which allows the visualization of photoreceptors, capillaries, and nerve fiber bundles. In the present study, we aimed to evaluate the parafoveal cone density in a series of patients diagnosed with Type 1 diabetes mellitus (DM1) within the past 9 years to 21 years and no or mild signs of DR and to correlate it with the duration of diabetes, the glycohemoglobin serum level, the presence of DR, and the SD-OCT retinal thickness measurement.

Materials and Methods

Patients diagnosed with DM1 participated in this study and signed an informed consent after full explanation of the procedure. Inclusion criteria were older than 18 years, diagnosis of DM1 from at least 1 year beforehand, no or mild signs of NPDR from the Early Treatment Diabetic Retinopathy Study severity scale, and 20/20 or better best-corrected visual acuity. Exclusion criteria were astigmatism higher than 3.00 diopters, the presence of any ocular disease, including ocular media opacities, or previous eye surgery. Age-matched voluntary healthy subjects were included in the study as control subjects. Control subjects had no history of systemic or ocular diseases and no previous eye surgery.

The study protocol had the approval of the local ethical committee and adhered to the tenets of the Declaration of Helsinki. All subjects received a complete eye examination, including a noncontact ocular biometry using the IOL Master (Carl Zeiss Meditec AG, Hennigsdorf, Germany), retinal imaging using Spectralis SD-OCT (Heidelberg Engineering GmbH, Heidelberg, Germany), a digital ophthalmoscope (F10; Nidek Co, Ltd, Tokyo, Japan), and color fundus photography (TRC-50 DX; Topcon Instrument, Corp, Tokyo, Japan). An MP1 microperimetry (Nidek Co, Ltd) was performed to determine the central 10° retinal sensitivity: a grid of 37 stimuli, with Goldmann III stimulus size, 200-millisecond duration, and a 4-2 threshold strategy was used. Numeric thresholds (in decibels) were exported for statistical analysis.

Adaptive Optics Retinal Imaging and Image Analysis

An AO retinal camera prototype (rtx1; Imagine Eyes, Orsay, France) was used to image the cone mosaic. Adaptive optics imaging sessions were conducted after dilating the pupils with 1 drop of 1% tropicamide. Both eyes of each subject were imaged. During AO imaging, each patient was instructed to fixate the internal target of the instrument moved by the investigator at specific retinal locations, considering that the fixation coordinates (x = 0° and y = 0°) correspond to the foveal fixation reference point. A video camera monitored the subject’s pupil and eye movements. Digital videos were recorded on 16 locations surrounding fixation, extending 4° nasal and temporal and 1.8° superior and inferior from fixation. Additional videos were recorded in regions of interest. For each location, a video of 40 frames (4° field size) was captured by the retinal camera. After acquisition, a proprietary program provided by the manufacturer has been used to correct for distortions within the frames of the raw image sequence and to correlate and frame-average to produce a final image with enhanced signal-to-noise ratio before further analysis. Frames exhibiting large motion artifacts because of eye movement or blinking (on average <5 frames per acquisition) were manually removed before processing.

The image cone labeling process was performed using an algorithm implemented with the image processing toolbox in Matlab (Mathworks, Inc, Natick, MA), as previously described by Li and Roorda with some enhancements. Filtering and morphologic image processing were applied to isolate the higher intensity signals corresponding to, presumably, cone photoreceptors. Filtering parameters were manually selected based on the estimated minimum diameter of two adjacent cones to avoid potential mistakes by eliminating locations that were too close together to the cones. The value of the filtering parameter varied between 10 pixels and 15 pixels according to the eccentricity location where cones were labeled. An empirically determined intensity threshold (0.18 peak intensity of the image normalized
to 1) was applied on the set of identified local maxima to further reduce false-positives. Cone density measures were performed by an independent expert observer (G.L.) who was not informed about the group membership of the images. Manual editing was performed by the same user to identify the cones missed or misinterpreted by the automated algorithm. During manual editing, the brightness and contrast of each image was adjusted by the observer to assist in determining whether a cone was present. This procedure was previously shown to significantly reduce the error of interobserver variability.21

For each location, cone density was calculated after manual checking in all cases. Cone density (cones/square millimeter) was estimated, within two 50 μm × 50 μm sampling windows, at specific eccentricities from the fovea (±230 μm, ±350 μm, and ±460 μm) along the horizontal and vertical meridians. Eccentricity was computed as the distance between the center of each sampling window and the foveal fixation reference point (x = 0° and y = 0°).

The x-y coordinates of the labeled cones were stored, and the center-to-center cone distances (“inter-cone distance [ICD]” or “cone spacing,” in micrometers) were calculated from them under the assumption that they were hexagonally arranged.21,22 Under this assumption, the cone spacing is determined from density counts by the following: ICD = 1,000[^2/10^D], where D is the number of cones per square millimeter.

The sampling window size, cone density and spacing, and eccentricity data were corrected based on axial length and refractive error of the individual eye according to the Gullstrand eye as a model, as previously shown.18,19,23 For each location, cone density was calculated after manual checking in all cases. Cone density (cones/square millimeter) was estimated, within two 50 μm × 50 μm sampling windows, at specific eccentricities from the fovea (±230 μm, ±350 μm, and ±460 μm) along the horizontal and vertical meridians. Eccentricity was computed as the distance between the center of each sampling window and the foveal fixation reference point (x = 0° and y = 0°).

The x-y coordinates of the labeled cones were stored, and the center-to-center cone distances (“inter-cone distance [ICD]” or “cone spacing,” in micrometers) were calculated from them under the assumption that they were hexagonally arranged.21,22 Under this assumption, the cone spacing is determined from density counts by the following: ICD = 1,000[^2/10^D], where D is the number of cones per square millimeter.

The sampling window size, cone density and spacing, and eccentricity data were corrected based on axial length and refractive error of the individual eye according to the nonlinear formula of Drasdo and Fowler and using the Gullstrand eye as a model, as previously shown.18,19,23–25

The spectacle-corrected magnification factor (RMF_{cor}) was calculated to correct for the differences in optical magnification and thus retinal image size between the eyes. The RMF_{cor} was estimated for each eye by consideration of the axial length and the trial lens added to the system to compensate for defocus. The spectacle vertex distance was set at 14 mm for all eyes.

In each eye, the final AO images were further automatically stitched together to create a larger montage image of the photoreceptor mosaic using a commercial software (Photomerge tool, Photoshop Version CS3; Adobe, San Jose, CA). This procedure was used, for reference purposes, to compare the AO images with the wide-field scanning laser ophthalmoscopy image and color fundus photographs.18

Spectral-Domain Optical Coherence Tomography Image Analysis

Spectral-domain optical coherence tomography images were acquired in each eye using a volume scan 10° × 15° in the high-resolution modality (numbers of B-scans, 13; distance between each scan, 240 μm; real-time averaging algorithm, 50 frames). The Spectralis software automatically provided two contour lines that were positioned at the layers of interest for segmented measurements of the retinal thickness. In this study, central retinal thickness (CRT), central outer nuclear layer thickness (ONL), and central photoreceptor layer (PL) thickness were manually measured along the horizontal (nasal, temporal) scan and the vertical (inferior, superior) scan passing through the fovea: measurements were obtained at the fovea and at 230 μm, 350 μm, and 460 μm away from the fovea. The CRT, ONL, and PL were calculated by taking the average of the horizontal and vertical measurements. The CRT was defined as the distance between the internal limiting membrane and the outer edge of the retinal pigment epithelium; the ONL was defined as the distance between the posterior boundary of outer plexiform layer and the external limiting membrane; the PL was defined as the distance between the external limiting membrane and the inner edge of the retinal pigment epithelium. The inner retinal complex was accordingly defined as the difference between the CRT and both the ONL and PL thicknesses.

Spectral-domain optical coherence tomography thickness measurements were taken by two independent observers who were masked to the patient group. All SD-OCT images were corrected according to the biometric data of each eye. Automated retinal thickness measurements of the 1-mm central Early Treatment Diabetic Retinopathy Study area, as provided by the Spectralis software, were recorded in each subject for comparison with the manually registered CRT.

Statistical Analysis

The repeatability of cone density measurements, performed on two 50 μm × 50 μm sampling windows at the same eccentricity location by the automated algorithm, was calculated based on the within-subject standard deviation (σ_w), that is, the common standard deviation of repeated measurements. To get the common σ_w, we averaged the variances, which is, the squares of the standard deviations of the two repeated measures for each subject. The σ_w was chosen as an index of measurement error, as discussed by Bland and Altman.26,27 The repeatability was defined as 2.77σ_w and reported both in terms of the measurement unit and as a percentage of the mean. The 95% confidence interval for repeatability was calculated as 2.77σ_w /√2(n−1), where n is the number of subjects and m is the number of observations for each subject.

Cone metrics and SD-OCT values, estimated at equivalent retinal eccentricity locations of fellow eyes,
were averaged in each subject and used for analysis. The repeated-measures analysis of variance was performed for the statistical analysis of cone density at each eccentricity along the horizontal and vertical meridians. The coefficient of variation was used to analyze the variation of cone density across subjects of the same group. A multiple regression analysis (linear mixed model) determined the relationships between the explanatory variables (age, duration of diabetes, glycohemoglobin serum level, diabetes status—defined as the absence or presence of DR—and CRT) and cone density. A principal component analysis was performed to determine the weighted influence of the above variables on cone density estimates and whether those variables contributed in the same way (i.e., they were correlated) or independently from each other.

Statistical significance was set at $P < 0.05$ for all the tests performed.

Results

Eleven DM1 patients (5 men and 6 women; age range, 33–51 years; mean, 41.00 ± 6.83 years) were included in this study. They had a diagnosis of DM1 in the past 9 years to 21 years (mean, 13.64 ± 4.03 years). The mean A1c form of glycohemoglobin (HbA1c) level was 7.38 ± 0.72%. Five patients (45%) were diagnosed with no signs of DR and 6 (55%) with mild NPDR. The eyes with mild NPDR showed one to several spots of hemorrhages and microaneurysms at the posterior pole. The mean duration of diabetes in patients with no DR and mild NPDR was 11.20 ± 1.79 years and 15.67 ± 4.37 years, respectively. All patients had 20/20 best-corrected visual acuity in both eyes.

A summary of the individual and average cone density values in the study group was 91%, 90%, and 89% of the average cone density in the control group, respectively. Three cases (Patients 1, 3, and 9), at some retinal locations, showed cone density values above the average estimates of the control group (Table 1 and Figure 3). Age did not significantly interact with the differences in cone density between DM1 and control eyes ($P > 0.05$).

The cone density decreased with increasing retinal eccentricity along all meridians ($P < 0.001$) both in DM1 and in control eyes. Statistically significant differences in cone density were measured between DM1 eyes and control eyes at each eccentricity ($P < 0.001$). In the study group, cone density ranged between an average maximum of 50,260 ± 7,842 cones/mm² at 230 μm nasal from the fovea to an average minimum of 37,171 ± 6,136 cones/mm² at 460 μm superior from the fovea. The average and individual cone density values are shown in Table 4 and Figure 3, respectively. At 230-μm, 350-μm, and 460-μm, the average cone density in the study group was 91%, 90%, and 89% of the average cone density in the control group, respectively.

The ICD ranged between an average minimum of 4.84 ± 0.34 μm at 230 μm from the fovea and an average maximum of 5.56 ± 0.32 μm at 460 μm from the fovea in the study group. It ranged between 4.61 ± 0.23 μm and 5.24 ± 0.21 μm in the control group, respectively. A summary of the individual and average cone spacing values of both groups is provided as supplemental material (see Figure, Supplemental Digital Content 1, http://links.lww.com/IAE/A191).

The CRT was 278 ± 20 μm and 260 ± 13 μm ($P < 0.05$) in the study and control groups, respectively. The automated 1-mm central Early Treatment Diabetic Retinopathy Study area thickness was 282 ± 19 μm and 265 ± 9 μm, respectively: the differences between the automated and manual thickness measurements were lower than 6% in all subjects, except for 2 DM1 patients (Patients 8 and 11) and 2 control subjects (D and G). The central PL thickness was 70 ± 3 μm and 71 ± 5 μm ($P > 0.05$) in DM1 and control eyes, respectively; the central ONL thickness was 82 ± 10 μm and 82 ± 8 μm ($P > 0.05$), respectively. Accordingly, the central inner retinal complex thickness was 125 ± 17 μm and
<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (Years)</th>
<th>Gender</th>
<th>Duration of Diabetes (Years)</th>
<th>HbA1c Level (%)</th>
<th>Diagnosis</th>
<th>Eye</th>
<th>Axl (mm)</th>
<th>BCVA (LogMAR)</th>
<th>CRT (Mean ± SD, μm)</th>
<th>Central PL Thickness (Mean ± SD, μm)</th>
<th>Central ONL Thickness (Mean ± SD, μm)</th>
<th>Central IRC Thickness (Mean ± SD, μm)</th>
<th>10° Retinal Sensitivity (Decibels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>F</td>
<td>17</td>
<td>6</td>
<td>DR</td>
<td>RE</td>
<td>22.68</td>
<td>0.0</td>
<td>265 ± 16</td>
<td>73 ± 3</td>
<td>72 ± 21</td>
<td>120 ± 15</td>
<td>20.00</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>F</td>
<td>21</td>
<td>7.2</td>
<td>DR</td>
<td>LE</td>
<td>22.46</td>
<td>−0.1</td>
<td>263 ± 20</td>
<td>65 ± 7</td>
<td>86 ± 15</td>
<td>112 ± 14</td>
<td>20.00</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>M</td>
<td>11</td>
<td>8</td>
<td>No DR</td>
<td>RE</td>
<td>23.30</td>
<td>0.0</td>
<td>268 ± 22</td>
<td>68 ± 5</td>
<td>82 ± 19</td>
<td>118 ± 19</td>
<td>20.00</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>M</td>
<td>10</td>
<td>8.2</td>
<td>DR</td>
<td>LE</td>
<td>24.19</td>
<td>−0.2</td>
<td>286 ± 23</td>
<td>68 ± 8</td>
<td>93 ± 12</td>
<td>125 ± 15</td>
<td>20.00</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>M</td>
<td>11</td>
<td>7.2</td>
<td>No DR</td>
<td>RE</td>
<td>24.20</td>
<td>−0.1</td>
<td>290 ± 17</td>
<td>65 ± 9</td>
<td>102 ± 3</td>
<td>123 ± 10</td>
<td>19.70</td>
</tr>
<tr>
<td>6</td>
<td>52</td>
<td>M</td>
<td>16</td>
<td>8</td>
<td>DR</td>
<td>LE</td>
<td>24.19</td>
<td>−0.2</td>
<td>287 ± 21</td>
<td>75 ± 2</td>
<td>95 ± 20</td>
<td>117 ± 14</td>
<td>20.00</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>F</td>
<td>19</td>
<td>7.3</td>
<td>DR</td>
<td>RE</td>
<td>25.00</td>
<td>−0.1</td>
<td>295 ± 30</td>
<td>75 ± 5</td>
<td>82 ± 17</td>
<td>131 ± 15</td>
<td>19.16</td>
</tr>
<tr>
<td>8</td>
<td>49</td>
<td>M</td>
<td>11</td>
<td>7.8</td>
<td>DR</td>
<td>LE</td>
<td>22.90</td>
<td>−0.1</td>
<td>284 ± 25</td>
<td>72 ± 6</td>
<td>68 ± 15</td>
<td>144 ± 15</td>
<td>19.88</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>F</td>
<td>14</td>
<td>8</td>
<td>No DR</td>
<td>RE</td>
<td>23.27</td>
<td>−0.1</td>
<td>254 ± 26</td>
<td>67 ± 9</td>
<td>80 ± 11</td>
<td>107 ± 16</td>
<td>19.88</td>
</tr>
<tr>
<td>10</td>
<td>51</td>
<td>F</td>
<td>11</td>
<td>7.2</td>
<td>No DR</td>
<td>LE</td>
<td>24.46</td>
<td>−0.1</td>
<td>302 ± 22</td>
<td>65 ± 8</td>
<td>81 ± 16</td>
<td>156 ± 16</td>
<td>19.72</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>F</td>
<td>9</td>
<td>6.3</td>
<td>No DR</td>
<td>RE</td>
<td>22.69</td>
<td>−0.1</td>
<td>235 ± 20</td>
<td>73 ± 3</td>
<td>61 ± 20</td>
<td>101 ± 15</td>
<td>19.66</td>
</tr>
</tbody>
</table>

AxL, axial length; BCVA, best-corrected visual acuity; F, female; IRC, inner retinal complex; LE, left eye; logMAR, logarithm of the minimum angle of resolution; M, male; RE, right eye; SD, standard deviation.
108 ± 18 μm (P < 0.05), respectively. The CRT was thinner in women than in men both in the DM1 patients and control subjects. It was 270 μm and 256 min women with DM1 and control women, respectively, and 287 μm and 266 μm in men with DM1 and control men, respectively. The interocular differences of CRT were 5% (15 μm) in all cases, except for a DM1 patient (Patient 10). The interocular differences of the central PL and ONL thicknesses were 10 μm (14% thickness) in 8 DM1 patients and 9 control subjects.

The multiple linear regression model explained 61% of the variance of cone density (r = 0.61; P < 0.01) in the population. Cone density tended to decline with aging (r = −0.33), chronic diabetes (standard r = −0.23), increased HbA1c serum level (r = −0.38), the presence of DR (r = −0.29), and thicker CRT (r = −0.56). Because the HbA1c level statistically highly correlated with the presence of DR (r = 0.85; P < 0.001) and the duration of diabetes (r = 0.93; P < 0.001), a principal component analysis was used to convert the...
correlated variables into a set of values called principal components. The HbA1c level of chronic diabetes and the presence of DR (principal component 1; $P < 0.001$) were therefore found as the variables having the highest influence on cone density decline, followed by aging (principal component 2; $P < 0.001$) and CRT (principal component 3; $P < 0.01$).

Additional images of the retina, located outside the areas of cone density estimation, were acquired to investigate regions of interest in DM1 eyes. In the
right eye of a patient (Patient 6) (Table 1; CRT, 296 µm ± 28 µm), there was a focal edema located inferior and nasal from the fovea (this region of interest was located far from the cone counting areas). At the position of the focal retinal edema, the cone photoreceptors were not always resolved (Figure 4). In AO retinal images, the microhemorrhages appeared as dark spots of different shapes and dimensions that could be clearly focused on the inner retina. At the position of the hemorrhage itself, a dark spot with defocused margins was projected onto the PL, completely masking the underlying cell photoreceptors (Figure 5).

The average central 10° retinal sensitivity showed values within normal ranges in all cases, although with a statistically significant difference \(P < 0.05 \) between DM1 and control eyes: it was 19.88 ± 0.17 decibels and 19.99 ± 0.03 decibels in DM1 and control eyes, respectively.

Table 4. Cone Density Values Estimated in the Study and Control Group at Various Retinal Eccentricities Along the Horizontal and Vertical Meridians

<table>
<thead>
<tr>
<th>Retinal Locations</th>
<th>230-µm Eccentricity (Cones/mm²)</th>
<th>350-µm Eccentricity (Cones/mm²)</th>
<th>460-µm Eccentricity (Cones/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study group (DM1)</td>
<td>49,577 ± 6,958*</td>
<td>44,086 ± 5,010*</td>
<td>38,093 ± 5,112*</td>
</tr>
<tr>
<td>Control group</td>
<td>54,803 ± 6,025</td>
<td>49,033 ± 4,628</td>
<td>42,446 ± 3,439</td>
</tr>
<tr>
<td>Nasal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study group (DM1)</td>
<td>50,260 ± 7,842*</td>
<td>43,678 ± 6,323*</td>
<td>37,423 ± 5,536*</td>
</tr>
<tr>
<td>Control group</td>
<td>54,946 ± 6,974</td>
<td>47,912 ± 4,497</td>
<td>42,680 ± 3,682</td>
</tr>
<tr>
<td>Superior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study group (DM1)</td>
<td>48,523 ± 7,390*</td>
<td>43,057 ± 6,297*</td>
<td>37,171 ± 6,136*</td>
</tr>
<tr>
<td>Control group</td>
<td>53,697 ± 5,433</td>
<td>48,606 ± 4,402</td>
<td>42,413 ± 3,061</td>
</tr>
<tr>
<td>Inferior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study group (DM1)</td>
<td>47,568 ± 7,522*</td>
<td>43,360 ± 6,321*</td>
<td>37,383 ± 5,956*</td>
</tr>
<tr>
<td>Control group</td>
<td>53,360 ± 6,297</td>
<td>48,036 ± 4,507</td>
<td>42,619 ± 4,195</td>
</tr>
</tbody>
</table>

Values are represented as mean ± standard deviation. *Analysis of variance, \(P < 0.001 \) (including effect of age).

Discussion

Several laboratory studies\(^ {13,28-30} \) have shown neural apoptosis, loss of ganglion cell bodies, and glial reactivity in the earliest stages of DR. Experimentally induced diabetes in rats has provided evidence of early cone photoreceptor loss in diabetic retinas\(^ {13} \): apoptotic cell death, detected via the TUNEL method, was the first pathologic sign evidenced after the onset of diabetes, and it occurred specifically in the outer retinal layers. The retinal neuropathy was also corroborated by previous functional studies in patients with DR\(^ {14,15} \), where an electrophysiological deficit in both cone and rod system responses at the receptorial level has been shown during diabetes. The decrease in the response has been associated with a loss of photoreceptors and/or a loss of outer segment disk membranes. Deficits both in contrast sensitivity and color vision (loss in sensitivity of the S cone pathway) have been reported.

![Fig. 3.](image-url)
in background retinopathy. Previous studies have also demonstrated an early involvement of the bipolar and ganglion cells during diabetes. Therefore, it is currently of interest to investigate in vivo the changes occurring to cone photoreceptors during diabetes. High-resolution AO imaging may represent a valid tool to investigate the microstructural retinal changes in diabetic patients. Recently, authors analyzed the microvasculature in a DM1 patient with severe NPDR using an AO scanning laser ophthalmoscopy and in 8 DM1 patients with mild NPDR using a flood-illumination AO retinal camera.

The parafoveal cone density was on average 10% lower in the study group than in the control group at each eccentricity along the horizontal and vertical meridians. The cone density variation was higher in DM1 eyes than in control eyes; most of the variation was found in patients who were diagnosed with diabetes before the age of 30 years. Three DM1 cases (27%) showed cone density values above the average of the control group at some retinal locations: 1 NPDR Case showing an excellent glycometabolic control (HbA1c = 6%) and 2 no DR cases (Cases 3 and 9).

The cone density values of our control group were compared favorably with previous work. In a histologic study, Curcio et al found an average decrease in cone density from approximately 60,000 cells/mm² at 0.25 mm to approximately 35,000 cells/mm² at 0.5 mm from the fovea in 7 cadaver eyes aged 27 years to 44 years. Li et al found an average cone density of approximately 45,000 cells/mm² at 0.30-mm eccentricity from the fovea in 18 subjects aged between 23 years and 43 years using an AO scanning laser ophthalmoscopy. In 2 healthy populations aged between 22
Furthermore, in a previous study, we found that at foveal values (±5° corresponding to approximately ±1.4 mm best-corrected visual acuity, and central 10° sensitivity was significantly different in the study group in comparison with the control group was matched control eyes. The cone decline was associated with a subtle cone loss in DM1 eyes in comparison with age-matched control eyes. The cone decline was associated with a prolonged disturbance in the glucose metabolism.

We did not find any statistically significant difference between the central PL or ONL thicknesses of the DM1 and control eyes. The absence of differences between the PL and/or ONL thicknesses of DM1 and control eyes could be related to the relatively small cone density difference (on average 5,000 cones/mm²) between the study and control groups. This result was consistent with a previous work, where the average ONL + IS thickness was 88.3 μm and 88.1 μm in 19 eyes with no DR and 20 eyes with DR, respectively, whereas it was 90.9 μm in 40 control eyes (OCT measurements were performed using the OCT-1000; Topcon, Tokyo, Japan). The segmented changes of CRT during diabetes should be further investigated over time. Implementation of AO technology to OCT could bring additional advantages to high-resolution retinal imaging in patients with DR.

In conclusion, AO retinal imaging provided a direct observation of the parafoveal cone mosaic, showing a subtle cone loss in DM1 eyes in comparison with age-matched control eyes. The cone decline was associated with a prolonged disturbance in the glucose metabolism. These preliminary results suggest that changes of the parafoveal cone mosaic may occur in the absence of severe clinical signs of DR or clinically significant macular edema. A prospective analysis of the PL in a large population of patients with no DR and NPDR of increasing severity is needed to understand how the course of the cone mosaic changes during diabetes. Correlation of cone density with functional testing, such as multifocal electroretinogram, and retinal perfusion could advance our understanding between the neural and vascular changes in DR. Furthermore, the development of analysis algorithms for evaluating packing...
arrangement of cones, in addition to cone density, could provide a more sensitive method to describe changes of the cone mosaic longitudinally over time.

Key words: adaptive optics retinal imaging, diabetic retinopathy, cone density, central retinal thickness.

Acknowledgments

The authors are thankful to Marianna Rosati, BSc, and Susanna Lioi, BSc, for archiving the SD-OCT data. The authors also thank Dr. Nicholas Devaney (Applied Optics Group, NUI, Galway) for his comments and revision of the manuscript.

References

Appendix

In this study, retinal distances were taken with respect to fixation: while this technique has some errors arising from the inability to accurately determine the distance of the foveal center from the fixation locus, the estimated average distance between the preferred locus of fixation and foveal center was found to be <3 arc minutes (approximately 14 μm) in more than 84% of eyes. By laterally displacing the center of our sampling window by 14 μm, the potential error in our eccentricity-dependent cone density measurements has been estimated to be lower than 1,000 cones/mm² at 230-μm eccentricity. The possible error arising from inaccuracy in locating the foveal center was therefore within the measurement error of the cone counting method (<1,400 cones/mm²).

The repeatability of automated cone density estimation was better than 9% within 460-μm eccentricity, with comparable values between DM1 and control eyes. Four previous studies reported statistics for repeated measures of the same retinal location. The estimated error in cone density measurements spanned from approximately 6% to approximately 7.5% within 0.70° eccentricity, favorably comparing to that shown in our study at equivalent eccentricities (i.e., 230 μm). Manual checking of the automated cone counting algorithm performance, as done in this work, is recommended to further minimize the error in density estimates. The error in cone density estimates can be attributed to cone selection, magnification error, distortion in cone images, selection of the region of interest, and sampling area. Beyond 400-μm eccentricity, the incorrect identification of rods can be considered as an additional, potential source of error.