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Abstract
Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front
distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens
by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing,
and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber
layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye
research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the
availability of first commercially available instruments we are making transformation of AO technology from a research tool to
diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative
databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more
detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical
trials which has already started.
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Introduction

Imaging of the human retina has undergone revolutionary
changes thanks to which we are able to view miniscule retinal
structures and its abnormalities. Current retinal imaging
modalities are mostly non-invasive and provide high
resolution of the tissue with good topographic orientation.
Conventional color fundus imaging, scanning laser ophthal-
moscopy (SLO) and optical coherence tomography (OCT)
have become routine in clinical practice. Newer technologies
are constantly under investigation and often underway.

Retinal cameras for current clinical imaging are generally
designed without correcting aberrations beyond defocus. In
order to bring the lateral resolution of ophthalmoscopes to
the microscopic scale, it is necessary to compensate not only
for defocus, but also astigmatism and higher order aberra-
tions. Similarly, current OCT technology provides excellent
axial resolution of images but less precise lateral resolution.
Adaptive optics (AO) is a technology used to improve the
performance of optical systems by reducing the effect of
wavefront distortions (aberrations) (Table 1). It was first used
in astronomical telescopes and laser communication systems
to remove the effects of atmospheric distortion, later in
microscopy and optical fabrication to reduce optical aberra-
tions. Adaptive optics works by measuring the distortions in
a wavefront and compensating for them with a device that
corrects those errors such as a deformable mirror or a liquid
crystal array.1–3

Retinal imaging using AO aims to compensate for higher
order aberrations (deviation of light from the ideal shape)
originating from the cornea and the lens. This is done by
using deformable mirror which serves as wavefront corrector.
The first use of retinal AO allowed visualization of single cone
photoreceptors. Currently, both cone and rod individual
photoreceptors can be imaged using this technology
(Fig. 1).4,5 AO systems have been coupled to scanning laser
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Table 1. Differences between optical coherence tomography and adaptive optics technology.

Optical coherence tomography Adaptive optics

Principle Low coherence interferometry Correction of wave front distortions
Detectors/correctors Reference mirror/spectrally separated detectors Deformable mirrors
Attachment devices Charge-coupled device (CCD) camera Scanning laser ophthalmoscope/retinal camera
Type of resolution Axial Lateral
Image type B-scan En-face image
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ophthalmoscope (SLO),6 flood-illuminated camera,7 and opti-
cal coherence tomography.8
Figure 2. An image of the same eye as in Fig. 1 using the same
instrument but focusing on the inner retina showing retinal nerve fibers
and details of retinal blood vessels (Image by Dr. Igor Kozak).
Clinical applications

The main application of AO retinal imaging has been to as-
sess photoreceptor cell density, spacing, and mosaic regular-
ity in normal eyes and various ocular diseases. Analysis of the
spatial distribution of the cone photoreceptors provides new
information on the physical aspects of visual sampling of the
human eye. Apart from photoreceptors, the retinal pigment
epithelium (RPE) cells can be seen using reflectance-based
AO imaging.9 The retinal nerve fiber layer, retinal vessel wall
and lamina cribrosa can also be visualized with AO technol-
ogy (Fig. 2).10–12 Patient factors, such as unstable fixation,
small pupil size, and media opacities, can present challenges
with image stabilization and light scatter, resulting in image
blur. Considerable image processing effort is required to col-
lect and produce the highest resolution images, including
registration, montaging, and quantitative analysis.3 Despite
all these challenges, retinal AO has been successfully used
in several disease entities in ophthalmology.
Diabetic retinopathy

Diabetic retinopathy (DR) is a microangiopathy resulting in
blood rheological abnormalities as a consequence of chronic
hyperglycemia.11,12 Rather than purely a vascular disease it is
now considered a neurovascular disorder. It has been
Figure 1. An image of photoreceptor mosaic in a young healthy myopic
eye using adaptive optics retinal camera (ImagineEyes, Orsay, France)
demonstrating a homogeneous mosaic of retinal cones and rods (Image
by Dr. Igor Kozak).
observed that excess plasma glucose may not account for
all cellular and functional changes in the progression of DR.
In addition to high glucose, the dysregulated levels of excito-
toxic metabolites, nutrients, hormones and several other fac-
tors, have been found to play a role in neurodegeneration in
DR.13 The neurodegeneration in DR consists of apoptosis
affecting the photoreceptors, bipolar and ganglion cells.14

Retinal microvascular and perfusion changes in patients
with diabetes have been observed even in the eyes with no
or minimal clinical retinopathy.15,16 These changes have been
demonstrated by SLO-based AO imaging without the use of
contrast enhancing agents in both cross-sectional17 and lon-
gitudinal assessment.18 Non-invasive assessment of the cap-
illary network has been performed using AO-OCT and AO
retinal camera.19,20 Recently, a subtle decrease of parafoveal
cone density was found in diabetic patients in comparison
with age-matched control subjects. The cone density decline
was moderately associated with a disturbance in the glucose
metabolism.21 AO has been used to visualize photoreceptors
after macular laser photocoagulation with pattern laser. In
small observation, no evidence of reduced photoreceptor
density around the laser lesions, no apparent size reduction
of the lesions relative to the initial application diameters,
and, thus no direct evidence of photoreceptor migration or
healing were found.22
Age-related macular degeneration

Age-related macular degeneration (AMD) is a multifacto-
rial disease that can cause severe vision loss due to either
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tissue loss in the macula or development of subfoveal choroi-
dal neovascular membranes.23 While the changes in late
stages of AMD are known, there is interest to image, charac-
terize and monitor very early stages of the disease. The idea
is to be able to measure disease burden, such as lipofuscin or
drusen volume, in order to predict the course of the dis-
ease.24–26

Few studies report on the use of AO to monitor drusen
progression and assess their direct effect on the overlying
photoreceptors (Fig. 3).27,28 En face AO IR imaging was used
to study and characterize regressing drusen in AMD.29 An in-
crease in photoreceptor disruption was visualized within the
macula in direct correlation with the stage of AMD progres-
sion leading to a decrease in visual acuity. Large coalescent
drusen and areas of geographic atrophy in advanced stage
dry AMD exhibited a significant decrease in visible photore-
ceptor density.30 Adaptive SLO has been reported to provide
adequate resolution for quantitative measurement of cone
spacing at the margin of geographic atrophy and over drusen
in eyes with AMD. Although cone spacing was observed to
be often normal at baseline and remained normal over time,
these regions showed focal areas of decreased cone reflectiv-
ity.31 Geographic atrophy was studied using AO-OCT which
showed that the inner segment/outer segment junctions lost
reflectivity at the margins of GA, while visual function was still
demonstrated. This was shown to be due to changes in
photoreceptor orientation near the GA border (Fig. 4).32

AO near infrared imaging has been reported to improve
the resolution of the changes affecting the RPE in GA when
compared to SLO.33

First attempts have been made to image mosaic of the ret-
inal pigment epithelium (RPE) cells in the living human eye.34

This was demonstrated by combining fluorescence imaging
methods with adaptive optics scanning light ophthalmoscopy
(FAOSLO). Most recently this technique was improved by the
focusing method to address poor compensation of the longi-
tudinal chromatic aberration and has been used to obtain the
first in vivo glimpse of the RPE mosaic in AMD.35

Retinal dystrophies

Retinal dystrophies are a group of progressive retinal
degenerations that eventually lead to loss of vision.
Figure 3. LEFT PANEL: A fundus color image of an eye with early age-relate
PANEL: A small retinal area of the same eye imaged by adaptive optics ret
photoreceptors overlying the drusen (Images by Prof. Michel Paques, Quinze
Symptoms associated with cone dysfunction include reduc-
tion of visual acuity, impaired color vision, and photophobia.
Patients with predominantly rod dysfunction complain of
nyctalopia.36 The primary cell type affected in this group of
diseases is the photoreceptors which can be visualized with
AO-based imaging instruments. Therefore AO technology
has been used to study retinal dystrophies and
degenerations.

One of the first observations was made in patients with
color vision deficit where AO found a reduction of one type
of cone rather than total absence of particular cone type as
previously thought.37 Another significant observation is that
both cone and rod photoreceptors vary in their intensity over
time.38,39 An interesting study has demonstrated that there is
a discrepancy between cone structure and function. In a
group of patients with inherited retinal degenerations, cone
density was found to be reduced by up to 62% below normal
at or near the fovea in eyes with visual acuity and sensitivity
that remained within normal limits. Despite a significant cor-
relation with foveal cone spacing, visual acuity and sensitivity
seemed to be insensitive indicators of the integrity of the
foveal cone mosaic.40 Recently, numerous retinal dystrophies
have been imaged using AO retinal imaging but most reports
are limited to few cases or imaging of family members with a
specific condition.41–46

AO-based retinal imaging can provide a sensitive struc-
tural outcome measures for clinical trials with new therapies
for inherited retinal degenerations. For example, in patients
with retinitis pigmentosa receiving ciliary neurotrophic factor,
AO scanning laser ophthalmoscopy revealed a relative pres-
ervation of cone structure despite an absence of significant
functional improvement.47 Alternatively, this technology can
be applied for proper selection of patients for specific clinical
trials.48

Glaucoma

Glaucoma is the leading cause of irreversible, preventable
blindness worldwide. Primary open angle glaucoma (POAG)
is a chronic optic neuropathy characterized by progressive
loss of retinal ganglion cells, usually associated with ocular
hypertension, leading to structural damage of the inner
retinal layers, as shown by progressive regional or diffuse
d macular degeneration shows numerous small yellowish drusen. RIGHT
inal camera (ImagineEyes, Orsay, France) demonstrating preservation of
-Vingts Hospital, Paris, France).



Figure 4. LEFT PANEL: A fundus autofluorescence image of an eye with late age-related macular degeneration shows an extensive area of geographic
atrophy with preservation of foveal tissue. RIGHT PANEL: An area of foveal tissue imaged by adaptive optics retinal camera (ImagineEyes, Orsay, France)
demonstrating hyper- and hyporeflective areas and general absence of photoreceptors (Images by Prof. Michel Paques, Quinze-Vingts Hospital, Paris,
France).
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thinning of the retinal nerve fiber layer (RNFL). Axonal tissue
loss in the RNFL has been reported to be one of the earliest
detectable glaucomatous changes.49

Three areas of study using AO technology have been of
interest in glaucoma. It is a study of fine structure of the
RNFL, study of the lamina cribrosa and the study of the outer
retina. In one of the first studies, AO-OCT outperformed high
resolution OCT in visualization of the RNFL in living eyes.10

Another study using AO scanning laser ophthalmoscopy,
measured the individual nerve fiber bundles width in normal
adult controls. In all the eyes, the AOSLO images showed
hyperreflective bundles, representing the nerve fiber
bundles, in the RNFL. Dark lines among the hyperreflective
bundles were considered to represent Müller cell septa.50

The same group showed reduced nerve fiber bundle widths
both in clinically normal and abnormal areas of glaucomatous
eyes associated with visual field defects. AO SLO thus may be
useful for detecting early nerve fiber bundle abnormalities
associated with loss of visual function.51

AOSLO has been found useful imaging technology for
assessing lamina cribrosa. In a recent study, the laminar pore
area was found to be affected by axial length and IOP.52 A 3-
D reconstruction of the monkey lamina cribrosa was achieved
combining en face AOSLO and spectral domain OCT
imaging.53

In human patients with glaucoma, investigators reported a
loss in cone density along with the thinning of the inner ret-
ina. Defects in the cone mosaic co-localized to the areas of
reduced visual sensitivity measured by visual field testing.54

In separate patients, the same authors observed that the
areas of reduced visual field sensitivity were not different
from normal areas in their inner photoreceptor segment
lengths, whereas the outer photoreceptor lengths were
shorter and more variable in retinal areas associated with sen-
sitivity loss. These same areas showed a disruption in visibility
of Verhoeff’s membrane.55
Animal imaging in retinal research

Progress in imaging of animal retina has been going hand
in hand with developments in imaging technology. Rodent
models are instrumental in the study of retinal disease mech-
anisms and in the development of treatments for human ret-
inal dystrophies. The majority of studies using rodent disease
models rely upon retinal histopathology to follow disease
progression and the effect of candidate therapies. Histopa-
thology yields high resolution images and morphometric esti-
mates of surviving retinal cells; however, it does not allow
longitudinal studies in the same animals. In vivo imaging of
the rodent retina offers the possibility to visualize disease
processes and progression in individual animals and to
reduce the effects of animal to animal variation, background
lighting and genetic background.56

The resolution of in vivo imaging is limited by the optical
quality of the rodent eye. Compared with the human eye,
rodent eyes have smaller axial lengths, higher optical powers,
larger average refractive errors and larger numerical aper-
tures. Rats typically have a large hyperopic refractive error.
Many studies have used fluorescence microscopy, fundus
photography, two photon microscopy, confocal microscopy,
or scanning laser ophthalmoscopy to image the living rodent
retina, allowing the visualization of structures such as blood
vessels, capillaries, nerve fiber bundles, photoreceptors, ret-
inal ganglion cells, retinal pigment epithelial cells and
microglial cells.57–59 Resolution in all of these studies could
be improved by correcting the eye’s aberrations with AO
so that many fine features that could previously be resolved
only in excised retina could now be imaged in vivo. Adaptive
optics ophthalmoscopes have enabled near diffraction-lim-
ited imaging of cellular structures (such as individual photore-
ceptors, ganglion cells, and RPE cells) in living human and
non-human primates as well as the resolution of subcellular
features (such as ganglion cell axons and dendrites) in living
non-human primates.60–63

Fluorescence scanning laser ophthalmoscope equipped
with adaptive optics (fAOSLO) has enabled visualization of
cellular and subcellular features in the rat retina, such as fine
capillaries and individual fluorescently-labeled ganglion cell
dendrites and axons.56 Using the same technology it was
possible to image individual RPE cells in vivo in monkeys34

Reflectance imaging with AO also allows for the imaging of
other cell types, such as astrocytes or pericytes. Imaging of
retinal ganglion cells (RGCs) remains extremely difficult
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because they are almost transparent and therefore invisible
in optical systems. In animal models, contrast agents can be
used to improve the visualization of RGCs but these
techniques are not feasible in humans.64 High resolution cone
mosaic has been achieved with AO in chick retina with impor-
tant implications for future studies of myopia.65
Conclusions

Recent interest in adaptive optics technology in eye
research has resulted in growing number of reports and pub-
lications utilizing this technology in both animals and humans.
With the availability of first commercially available instru-
ments we are making transformation of AO technology from
a research tool to diagnostic instrument. The current chal-
lenges include imaging eyes with less than perfect optical
media, formation of normative databases for acquired
images such as cone mosaics, and the cost of the technology.
The opportunities for AO will include more detailed diagno-
sis with description of some new findings in retinal diseases
and glaucoma as well as expansion of AO into clinical trials
which has already started. This can allow for more sensitive
monitoring and evaluation of response to newly developed
treatments.
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